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We present a general algebraic framework for the study of quantum/braided
Clifford algebras. We allow that the quadratic form g on the base vector space
V takes values from a noncommutative algebra S. Clifford algebra is understood
as a Chevalley–Kähler deformation of the braided exterior algebra built from V,
S, and the initial braid operator s: V ^ V → V ^ V. The new product is
canonically associated to g, s, and S, and it is constructed by applying Rota’s
and Stein Cliffordization.

1. INTRODUCTION

We present a general formalism of braided Clifford algebras, generalizing
a formulation proposed in –Durd-evich and Oziewicz (1996). The basic philoso-
phy of this paper is the same as that of –Durd-evich and Oziewicz (1996) and
Oziewicz (1997)—we shall construct braided Clifford algebras as Chevalley–
Kähler deformations of braided exterior algebras (Woronowicz, 1989). In
contrast to –Durd-evich and Oziewicz (1996), however, we shall allow here
the situations when the basic quadratic form, defined on the underlying vector
space V, takes values from a noncommutative algebra S. A simple example
of a quantum Clifford algebra with noncommutative metric coefficients can
be found in Lawrynowicz et al., (1994).

It is possible to include in the theory various examples of quantum
Clifford algebras and spinors naturally appearing in noncommutative geome-
try. Our formulation naturally fits into a framework (Oziewicz, 1998) of
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diagrammatic manipulations, including a quantum Dirac operator. Further-
more, various braided Clifford algebras are intrinsically associated with com-
pact quantum groups (Woronowicz, 1987) and quantum principal bundles
(–Durd-evich, 1996; –Durd-evich, 1997), where it is possible (–Durd-evich, 2000)
to develop a general formalism of spinorial frame structures (including the
Clifford algebra bundle and Dirac operator) over quantum spaces.

2. ALGEBRAIC SETUP

Consider a complex finite-dimensional vector space V equipped with a
braid operator s: V ^ V → V ^ V and an antilinear involution ∗: V → V.
The map s corresponds to the classical transposition and ∗ plays the role of
the complex conjugation. The map ∗ extends naturally to a ∗-structure on
the tensor algebra V^, and we shall denote by the same symbol ∗ a unique
antimultiplicative (unital) antilinear extension on the tensor algebra. We shall
assume that ∗s 5 s∗.

Let S be a ∗-algebra, and let g: V ^ V → S be a linear map. We are
going to formalize the idea of a quantum metric; it will be allowed that
metric coefficients do not commute.

(i) Braided symmetricity of the metric, gs 5 g. For this to make any
sense, it is necessary that 1 belongs to the spectrum of s. The motivation
for this assumption comes from the classical formalism. It is not necessary
for our main constructions to work; however, it is a natural condition when
we deal with quantum groups that generalize orthogonal transformations—it
prevents ‘too many’ intertwiners from entering the game.

(ii) Reality property, ∀x, y P V, g(x, y)* 5 g(y*, x*).
(iii) Funny s-compatibility,

g ^S g 5 (g ^S g)(id ^ s ^ id) (s21 ^ s)(id ^ s21 ^ id)
(1)

g ^S g 5 (g ^S g)(id ^ s ^ id) (s ^ s21)(id ^ s21 ^ id)

The above two equations are equivalent if we assume that the reality condition
holds. This property ensures that g is extendible to the level of appropriate
S-bimodules.

(iv) Weak positivity. We have to assume that S is realized by operators
in the Hilbert space H 5 l2(Z). Since in general these operators will be
unbounded, we have to take care about the domains. We shall assume that
there is an everywhere dense linear subspace H0 # H which is a common
domain for all the operators from S. We shall also assume that the *-structure
on S is represented as taking formal adjoints of linear operators in H0 and
that there exist cyclic and separating vectors V P H0 for S. A possible
candidate for positivity would be
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∀x P V, g(x*, x) $ 0, x 5 0 ⇔ g(x*, x) 5 0

The reason why we call this condition ‘weak’ positivity will become clear
after we construct a canonical S-bimodule structure over V and introduce a
stronger version of positivity.

(v) Minimality and Invertibility. The matrix gij 5 g(ui , uj) is invertible
in S, where {u1, . . . , ud} are basis vectors in V, and d 5 dim(V). The algebra
S is generated by the matrix elements of g and g21.

(vi) Twisting S and V. Let nS: S → Md (S) be a unital homomorphism.
This map is completely determined by its values on the elements gij and it
gives us the structure of a right S-module, in the free left S-module VS }

S ^ V, so that we have a bimodule structure. The right S-multiplication is
given by

ui q 5 o
j

nS(q)ijuj , nS: V ^ S → S ^ V,

nS(ui ^ q) 5 o
j

nS(q)ij ^ uj

This twisting preserves the product and the unit in S. The following condition
completely fixes nS: nS(id ^ g) 5 (g ^ id)(id ^ s)(s21 ^ id).

Lemma 2.1. The *-involutions on V and S naturally combine to a *-
structure on the bimodule VS. The map nS: V ^ S → S ^ V is invertible and

*nS* 5 n21
S (2)

It follows that VS is free, as a right S-module.

Proof. The map ∗: VS → VS is introduced by (q ^ uj)* 5 u*j q*. It is
sufficient to prove that such a map is involutive. This follows from (2) and
the reality properties for s and g. n

As a right/left S-module,

V^n
S } V ^ ??? ^ V ^ S } S ^ V ^ ??? ^ V\ \

n n

Our definition of the S-bimodule structure implies that the braiding
s: V ^ V → V ^ V is (necessarily uniquely) extendible to a bimodule
homomorphism s: V^2

S → V^2
S . Similarly, property (1) ensures that the metric

tensor g: V ^ V → S is uniquely extendible to a S-bilinear map g:
V^2

S → S.

Lemma 2.2. Let } and 1 be left S-modules and let F: } → 1 be a
linear map satisfying F(gijj) 5 gijF(j). Then F is left S-linear.
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Proof. It is sufficient to check that F commutes with left multiplications
by the matrix elements [g21]ij. However this is equivalent to the above
formula. n

Our extensions preserve all relevant algebraic relations between g, s,
and ∗. There is an interesting way to describe the relation between the left
and the right S-module structures on VS,

(id ^ g)(s ^ id) 5 (g ^ id)(id ^ s), ^ [ ^S (3)

The space VS, together with the extended s, generates a braided monoidal
category #. We shall use the same symbol s to denote the generic braiding
in this category and the name symbol g for extended contraction maps
g: V^n

S ^S V^n
S → S, defined inductively by

x, y P V, g{(c ^ x) ^ ( y ^ j)} 5 g(c, g(x, y)j)

where we shall also assume that tensors with different grades are mutually
‘orthogonal’.

Consider a map ^ &: VS 3 VS → S, ^c, j& 5 g(c*, j). Then

^c, ja& 5 ^c, j&a, ^ca, j& 5a*^c, j&, ^c, aj& 5 ^a*c, j&

^c, j&* 5 ^j, c&, ^c, j 1 w& 5 ^c, j& 1 ^c, w&

This map plays the role of a Hermitian scalar product in VS.
(vii) Strict positivity. Assuming that S is realized in H 5 l2(Z), we have

^j, j& 5 g(j*, j) . 0, ∀j P VS \{0}

This condition is, in general, stronger than (iv). It is easy to construct examples
where (iv) holds and (vii) fails. The above-introduced S-valued scalar product
is naturally extendible to higher order tensor blocks V^n

S . All algebraic proper-
ties are preserved.

In what follows, it will be assumed that conditions (i)–(iii) and (v)–(vii)
are satisfied. The space VS equipped with ^ & gives us a generally unbounded
unitary bimodule over S. Furthermore, the extended scalar products on spaces
V^n

S are understandable as n-fold tensor iterations of the initial bimodule VS.
In particular, it follows that all extended ^ & are strictly positive, too (all
V^n

S are unitary bimodules).

Lemma 2.3. The braid operator s: V^2
S → V^2

S is Hermitian,

^c, s(j)& 5 ^s(c), j&, ∀c, j P V^2
S

The map s: V ^ V → V ^ V is diagonalizable, and has real eigenvalues.

Proof : The Hermicity property follows from *s 5 s* and
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g(c, s[j]) 5 g(s[c], j), ∀c, j P V ^ V

which, in turn, follows from the definition of the bimodule structure on VS.
Let v: S → C be an arbitrary faithful state on S. Then v ^ & is a scalar
product on V ^ V, and s is Hermitian with respect to this scalar product. n

3. BRAIDED EXTERIOR ALGEBRAS AND CLIFFORDIZATION

We follow -Durd-evich and Oziewicz (1996), which means that braided
Clifford algebras will be the Chevalley–Kähler deformations of braided exte-
rior algebras. Let V∧ be the braided exterior algebra (Woronowicz, 1989)
built over (s, V). This algebra is defined as V∧ 5 V^/ker(As), where As is
the total braided antisymmetrizer map. The exterior algebra gets its *-structure
from V^. The algebra V∧ possesses a natural braided Hopf algebra structure,
where the coproduct map is specified by

f(a) 5 S
n

i50
Bin2i(a), a P V∧n

and Bkl: V∧k1l → V∧k ^ V∧l is the braided inverse-shuffle operator.
The coproduct map has a particularly elegant form if we make natural

identifications induced by the antisymmetrizer map V∧n } im(An
s),

a 5 o x1 ^ ??? ^ xn , f(a) 5 o
n

i50
{x1 ^ ??? ^ xi} ^ {xi11 ^ ??? ^ xn}

The antipode map is braided-antimultiplicative (acting as a total s-inverse
permutation). The Hopf algebra structure is compatible with the *-involution,
in the sense that

f(a*) 5 f(a)*, k(a*) 5 k(a)*

All considerations with the braided exterior algebra can be incorporated
to the level of S-modules. Let V∧

S be the braided exterior algebra constructed
from VS and the extended s. Then we have the following natural identifica-
tions of left/right S-modules:

V∧
S } V∧ ^ S } S ^ V∧

The coproduct map f is naturally and uniquely extendible to a S-bilinear
map f : V∧

S → V∧
S ^S V∧

S. In a similar way, it is possible to extend the
coinverse and the counit.

The block antisymmetrizers An
s: V^n → V^n are Hermitian maps and

commute with the *-structure. Hence the pairing

g∧: V^
S 3 V^

S → S, g∧(c, j) 5 g(c, Asj), g∧(1, 1) 5 1

is projectable down to a map g∧: V∧
S 3 V∧

S → S.
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Our braided Clifford algebra cl[V, g, s, S] is identified with V∧
S at the

level of S-bimodules. The *-structure will also be the same. However, cl[V,
g, s, S] will be equipped with a new product defined by the Cliffordization
(Rota and Stein, 1994),

m̃ 5 m(id ^ g∧ ^ id)(f ^ f)

where m: V∧
S ^ V∧

S → V∧
S is the original product in V∧

S. The first thing to
examine is that we obtain a nice *-algebra this way:

Proposition 3.1. The product m̃ is associative and 1 is the unit element.
The *-involution is m̃-antimultiplicative.

Proof. The associativity of the product follows from braided-multiplicati-
vity of the coproduct, property (3), and the following interesting identities:

g∧(m ^ id) 5 g∧(id ^ g∧ ^ id)(id ^ f)

g∧(id ^ m) 5 g∧(id ^ g∧ ^ id)(f ^ id)

The fact that 1 is the m̃-unit follows from g∧(1, a) 5 g∧(a, 1) 5 e(a).
The m̃-antimultiplicativity of ∗ follows from standard commutation relations
between ∗ and m, f, g∧. n

Definition 1. The constructed *-algebra cl[V, g, s, S] is called the braided
Clifford algebra associated to V, g, s, and S.

4. EXTRA CONDITIONS

We are now going to discuss natural C*-type norms on cl[V, g, s, S].
For this to work, it will be necessary to introduce a last set of our assumptions,
regarding a more subtle behavior of s.

A nice way to introduce such properties is to postulate the existence of
an auxiliary braid operator t: V^2

S → V^2
S , as will be discussed near the end

of this paper. Playing with two braid operators will also enable us to prove
interesting properties of s and its braided exterior algebra V∧

S.
It is possible to proceed without making any extra assumptions on the

existence and properties of t; however, we have to postulate the positivity
of braided antisymmetrizer maps.

(viii) Positivity of braided antisymmetrizers. All braided antisymmetrizer
maps An

a: V^n
S → V^n

S are positive operators. The positivity property is crucial
to define a C*-algebraic structure on the Clifford algebra because only in
this case will the scalar product ^ &∧ on V∧

S given by the formula ^a, b&∧ 5
g∧(a*, b) be strictly positive, giving us a structure of a generally unbounded
unitary bimodule over S.
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Proposition 4.1. The counit map e: cl[V, g, s, S] → S is Hermitian, S-
bilinear, and strictly positive.

Proof. Hermicity and S-linearity are obvious (the counit here is the
projection on S). The strict positivity follows from the identity

e(a* b) 5 ^a, b&∧ n (4)

When dealing with Hilbert space operators, there is an interesting
assumption we can add to the list of properties of S—we can assume that
the set of C*-algebraic norms on S distinguishes elements of S. Not every
*-algebra possesses this property, and many *-algebras do not admit any
representation by bounded operators. However, if S admits C*-algebraic
norms, then they would be naturally extendible to cl[V, g, s, S].

To see this, we can consider the left regular representation of cl[V, g,
s, S] in the S-bimodule V∧

S According to (4), this representation is a *-
representation,

^a, Tb&∧ 5 ^T* a, b&∧, ∀a, b P V∧
S, ∀T P cl[V, g, s, S]

If in addition all the operators T P cl[V, g, s, S] are continuous, then there
is a natural C*-norm on cl[V, g, s, S]. It is sufficient to check the continuity
condition for generators from V. If the braiding s is such that there exists a
volume element in V∧, then the continuity condition would hold automatically.

Let analyze a couple of cases when the positivity of antisymmetrizers
would hold automatically. Assume that a self-adjoint braid operator t: V^2 →
V^2 is given, satisfying ∗t∗ 5 t21, extendible by S-linearity to V^2

S , and
such that

im(I 2 s) 5 ker(I 1 t), im(I 1 t) 5 ker(I 2 s) (5)

A consequence is that s and t commute and

im(An
S) # {t-antisymmetric n-tensors} (6)

This inclusion is a simple consequence of (5) and the fact that we can write

An
s 5 [idk ^ (I 2 s) ^ idn2k22]Tk

where Tk: V^n
S → V^n

S is the part of the antisymmetrizer sum, containing
permutations whose inverse does not reverse the order of k 1 1 and k 1 2.

Proposition 4.2. Assume that all s-twists act in the same way on the
vectors from the space of t-antisymmetric n-tensors. Then, this space is
s-invariant.

If in addition 1 P C is the only positive eigeinvalue of s, then all
braided s-antisymmetrizers will be positive.
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Proof. The fact that s-twists act in the same way on the t-antisymmetric
vectors means that we can always (trivial for n . 4; for n 5 2, 3, 4, it is
necessary to use the fact that s and t commute) exchange them with t-twists
(acting as 21). Hence, the space of t-antisymmetric tensors is s-invariant.

The second assumption means that s: ker(I 1 t) → ker(I 1 t) is strictly
negative, as the space ker (I 1 t) is spanned by all negative eigensubspaces
of s.

Therefore, all s-antisymmetrizers are positive and their images coincide
with t-antisymmetric spaces. n

Proposition 4.3. Consider mutually equivalent properties

(t ^ id)(id ^ t)(s ^ id) 5 (id ^ s)(t ^ id)(id ^ t)
(7)

(s ^ id)(id ^ t)(t ^ id) 5 (id ^ t)(t ^ id)(id ^ s)

The above equations transform one to another by the *-conjugation. If they
hold, and if t-antisymmeric n-tensors are invariant under s-twists, then all
s-twists act in the same way in this space.

Proof. Let us consider the case n 5 3. If c P V^3 is completely t-
antisymmetric and if the invariance property holds, then (7) gives (id ^ s)(c)
5 (s ^ id)(c). n

Furthermore, let us observe that the following pairs of strange equalities
are equivalent

(t ^ id)(id ^ s)(t ^ id) 5 (id ^ s)(t ^ id)(id ^ t)
(8)

(t ^ id)(id ^ s)(t ^ id) 5 (id ^ t)(t ^ id)(id ^ s)

(id ^ t)(s ^ id)(id ^ t) 5 (s ^ id)(id ^ t)(t ^ id)
(9)

(id ^ t)(s ^ id)(id ^ t) 5 (t ^ id)(id ^ t)(s ^ id)

The equivalent equalities are mutually adjoint. The equivalence also follows
from the braid equation for t and the fact that s commutes with t.

Lemma 4.4. If the above equalities hold, then the spaces of fully t-
antisymmetric tensors of order n $ 2 are invariant under actions of all possible
s-twists.

Proof. The invariance under s-twists easily follows from the commuta-
tion property, (8), and (9). n

Proposition 4.5. If the spaces of t-antisymmetric operators are invariant
under all possible s-twists and if the restriction s: ker(I 1 t) → ker(I 1 t)
is negative, then all antisymmetrizer maps An

s are positive. Furthermore, for
each n $ 2, we have
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im(An
s) 5 {t-antisymmetric n-tensors} (10)

Proof. Let Yn: V^n
S → V^n

S be given by Yn 5 2(n
k52 (2)kpkn,s, where

the sum goes over permutations pkn P Sn transposing 1 and the blocks {2,
. . . , k} while acting trivially in {k 1 1, . . . , n}. The braided antisymmetrizers
satisfy the following recursive relations:

An11
s 5 id ^ An

s 2 (id ^ Yn)(s ^ An21
s )(id ^ Y †

n) (11)

Now, using induction on n, the negativity assumption for the restriction map
s: ker(I 1 t) → ker(I 1 t), and recursive formulas (11), it follows that
restricted antisymmetrizers

An
s: {t-antisymm n-tensors} → {t-antisymm n-tensors}

{t-antisymm n-tensors}' 5 o
k

V^k
S ^ im(I 1 t) ^ Vn2k22

S 5 ker(An
s)

are strictly positive, in particular invertible operators. In particular, (10) holds
and obviously An

s are positive everywhere. n

If (10) holds, it follows that the algebra V∧
S is quadratic (generated by

its quadratic relations). In this case, the Clifford algebra cl[V, g, s, S] can
be viewed as the algebra built over VS together with generating relations

o
a

xaya 5 o
a

g(xa, ya), oa s(xa ^ ya) 5 oa xa ^ ya

We can introduce spinors as vectors of irreducible representations of
the *-algebra cl[V, g, s, S] by bounded operators. Every such representation
of cl[V, g, s, S] is (as generally for C*-algebras) obtained from a pure state
v: cl[V, g, s, S] → C via the GNS construction.

The algebra cl[V, g, s, S] may be infinite dimensional (the most interest-
ing situations appear when S is infinite-dimensional) and possess nonequiva-
lent irreducible representations.

In our context of framed quantum principal bundles (–Durd-evich, 2000),
the operator t was coming from the bicovariant bimodule. In this context, it
is natural to assume that S is of a ‘bicovariant nature’, too. Specifically, this
requires the existence of a right !-module structure +: S ^ ! → S and a
right !-comodule structure ûS: S → S ^ ! which is a (continuous) unital
*-homomorphism and such that

(ab) + a 5 (a + a(1))(b + a(2)), 1 + a 5 e(a)1

S(q + a) 5 o
a

(qa + a(2)) ^ k(a(1))caa(3)

Here ! is the Hopf *-algebra corresponding to (polynomial functions over)
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a spinorial quantum structure group G. The maps + and ûS are completely
fixed by postulating

g(x, y) + a 5 g(x + a(1), y + a(2)), ûSg (x, y) 5 (g ^ id)û(x ^ y)

The above formulas extend to V∧
S.
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